Construction Technology for Builders

1E

Glenn P. Costin

Construction Technology for Builders

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-202

Construction Technology for Builders

Glenn P. Costin

Construction Technology for Builders 1st Edition Glenn P. Costin

Head of content management: Dorothy Chiu Senior content manager: Sophie Kaliniecki Content developer: Samantha Brancatisano Project editor: Raymond Williams Text designer: Nikita Bansal Cover designer: Chris Starr (MakeWork) Editor: Greg Alford Proofreader: Sylvia Marson Permissions/Photo researcher: Liz McShane Typeset by Cenveo Publisher Services

Any URLs contained in this publication were checked for currency during the production process. Note, however, that the publisher cannot vouch for the ongoing currency of URLs.

© 2020 Cengage Learning Australia Pty Limited

Copyright Notice

This Work is copyright. No part of this Work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means without prior written permission of the Publisher. Except as permitted under the *Copyright Act 1968*, for example any fair dealing for the purposes of private study, research, criticism or review, subject to certain limitations. These limitations include: Restricting the copying to a maximum of one chapter or 10% of this book, whichever is greater; providing an appropriate notice and warning with the copies of the Work disseminated; taking all reasonable steps to limit access to these copies to people authorised to receive these copies; ensuring you hold the appropriate Licences issued by the Copyright Agency Limited ("CAL"), supply a remuneration notice please contact CAL at Level 11, 66 Goulburn Street, Sydney NSW 2000, Tel: (02) 9394 7600, Fax: (02) 9394 7601 Email: info@copyright.com.au

For product information and technology assistance, in Australia call 1300 790 853; in New Zealand call 0800 449 725

For permission to use material from this text or product, please email aust.permissions@cengage.com

National Library of Australia Cataloguing-in-Publication Data ISBN: 9780170416047 A catalogue record for this book is available from the National Library of Australia

Cengage Learning Australia Level 7, 80 Dorcas Street South Melbourne, Victoria Australia 3205

Cengage Learning New Zealand Unit 4B Rosedale Office Park 331 Rosedale Road, Albany, North Shore 0632, NZ

For learning solutions, visit cengage.com.au

Printed in China by 1010 Printing International Limited. 1 2 3 4 5 6 7 24 23 22 21 20

BRIEF CONTENTS

Part 1	Codes and standards	1
CHAPTER 1	Building codes and standards	2
CHAPTER 2	Legal requirements for building and construction projects	33
CHAPTER 3	Construction contracts	54
CHAPTER 4	Work health and safety	73
CHAPTER 5	Plans and specifications	89
CHAPTER 6	On-site supervision	133
CHAPTER 7	Business disputes	178
Part 2	Business preparation	193
CHAPTER 8	Tender documentation	194
CHAPTER 9	Small business finances	212
Part 3	Design considerations	232
CHAPTER 10	Site surveys and set out procedures	233
CHAPTER 11	Simple building sketches and drawings	297
Part 4	Structures	313
CHAPTER 12	Structural principles	314
CHAPTER 13	Applying structural principles to low-rise constructions	353
Part 5	Sustainability	419
CHAPTER 14	Thermal efficiency and sustainability	420
CHAPTER 15	Minimising waste	461

CONTENTS

Guide to the	text	ix
Guide to the	online resources	х
Australian st	andard units of measure	xi
Introduction		xiv
About the au	uthor	xvi
Acknowledge	ements	xvii
Unit convers		xviii
List of figure	25	xix
-	te for technical drawings	XXV
Part 1	Codes and standards	1
CHAPTER 1	Building codes and standards	2
	Introduction	3
	The NCC classes of buildings	5
	Accessing and interpreting codes and standards	12
	Review design solutions for effectiveness and compliance Fire protection	17 26
CHAPTER 2	Legal requirements for building and construction projects	33
	Introduction	34
	Builder licensing or registration	34
	WHS legislation and provisions on site	37
	Legal requirements relevant to construction	38
	Insurance and regulatory requirements Financial transactions	41 43
	Building contract obligations	43
	Industrial relations policy	48
	Dispute resolution	51
CHAPTER 3	Construction contracts	54
	Introduction	55
	Business contracts: the essentials	55
	Selecting a contract Contract preparation	64 68
CHAPTER 4	Work health and safety	73
	Introduction	74
	Areas of potential risk	74
	Inspecting and reporting on areas of specific risk	77
	Implementation of control measures	81
	Communication and educational programs	85

CHAPTER 5	Plans and specifications Introduction Types of drawings and their purposes Common symbols, abbreviations and terminology Key features of site plans Key features of working drawings Specifications: how to read and interpret Specifications: the non-structural elements	89 90 107 112 119 125 129
CHAPTER 6	On-site supervision Introduction Payments, claims and general contract administration Communications: the supervisor's role Quality control Final administration: towards the completed project	133 134 134 150 158 167
CHAPTER 7	Business disputes Introduction Evaluating the information and developing dispute resolution procedures Investigate disputes and resolution strategies: negotiating with parties Resolution: identifying the opportunities	178 179 179 184 186
Part 2	Business preparation	193
CHAPTER 8	Tender documentation Introduction Contracts and risks Tender preparation The supporting documentation The completed document Company endorsement	194 195 201 205 207 209
CHAPTER 9	Small business finances Introduction Implement a financial plan Monitor financial performance	212 213 213 226
Part 3	Design considerations	232
CHAPTER 10	Site surveys and set out procedures Introduction Levelling devices: set up and use Setting out: techniques and calculations Topography Longitudinal sections: pipelines and drainage	233 234 234 264 280 288
CHAPTER 11	Simple building sketches and drawings Introduction Preparing to make sketches and drawings Creating simple sketches and drawings Notating and processing drawings	297 298 298 303 308

Part 4 Structures

313

CHAPTER 12	Structural principles Introduction Structural principles: the basics Structural principles: loads Moments and force system solutions Bracing systems Truss systems: floor and roof components Material properties: influence upon structural performance Structural characteristics of common building elements Structural principles in demolition	314 315 315 320 327 331 332 335 340 349
CHAPTER 13	Applying structural principles to low-rise constructions Introduction The National Construction Code Planning for structural integrity The footings Flooring systems Wall systems Roofing systems Windows and wall cladding	353 354 355 366 374 389 401 414
Part 5	Sustainability	419

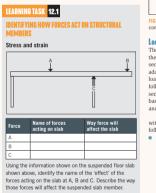
CHAPTER 14	Thermal efficiency and sustainability	420
	Introduction	421
	Apply legislative and planning requirements for thermal efficiency	421
	Reviewing the design: effectiveness and compliance	430
	Construction management: ensuring the outcome	454
CHAPTER 15	Minimising waste	461
	Introduction	462
	Waste management strategies	462
	Waste management and procurement	467
	Waste management and the building process	470
Appendix 1: H	lome building contract for work over \$20,000	476
Appendix 2: F	Project specifications	478
Appendix 3: E	Bob's Carpentry business plan (excerpt)	487
Appendix 4: N	Nore complex force systems: further solution examples	490
Appendix 5: W	Vaste management plan template	497
Glossary		502
Index		515

Guide to the text

As you read this text you will find a number of features in every chapter to enhance your study of Construction Technology for Builders and help you understand how the theory is applied in the real world.

CHAPTER-OPENING FEATURES

A list of **Elements** gives you a clear sense of what topics each chapter will cover. It will indicate what you should be able to do after reading the chapter within that part.


BUILDING CODES AND STANDARDS

Chapter overview

Australia, like many other parts of the world, has moved a long way forward from just Austalia, line inally during parts to the work, has inbred a long way to wald indir just 'knocking together' a house, shed, fence, or indeed any other structure. Today's buildings must comply with a raft of standards and codes. This chapter explores these codes and standards: in particular, the National Construction Code or NCC.

FEATURES WITHIN CHAPTERS

Learning tasks encourage you to practically apply the knowledge and skills that you have just read about.

Dead loads FIGURE 12.12 Examples of loads on a typical two-storey construction

Loads 1: Live and dead loads

The purpose of this section is to identify and define the loads common to most domestic structures. The section begins with *dead loads* and *live loads* before addressing *wind loads*. A range of other common loads important to structural design are then discussed followed by the identification of *load patts*. The section closes with a range of basic load calculations based upon Newton's laws and the concept of statics and equilibrium discussed earlier. No should note from the outset that when dealing with backs on structures way should note to the the loads common to most domestic structures. The

- with loads on structures you should refer to the following standards: AS/NZS 1170:2002 Structural design actions and its
- General principles (1170.0:2002)
- General principles (1170.0:2002) Permanent, imposed and other actions (1170.1:2002) Wind actions (1170.2:2011) Snow and ice actions (1170.3:2003) Earthquake actions in Australia (AS only 1170.4:007)

Case studies provide step by step instructions on how to perform specific tasks/processes.

CASE STUDY

Multiple classifications

Multiple classifications Consider a multi-storey Class 7a carpark with a Class 5 office included in the 2nd storey. The office floor area is only 9% of the total floor area for that level. In this case the whole storey may be considered as Class 7a. If that was the sole alternate use element in the whole structure, then the whole building is Class 7a.

whole building is Class 7a. However, in the next level of car parking above, there is a larger office. In this case it takes up 14% of the total floor area. This level of the carpark must then be duel classified as Class 5/7a. Likewise, the building as a whole (assuming no other alternative use sections of the building exist) will be Class 5/7a.

The exception to this ruling is the Class 4 element: a Class 4 dwelling is a Class 4, irrespective of its percentage of the storey's floor area. While a building is being designed it may be unclear who the tenant or tenants will be, or how they may ultimately use the facility. This is why classifying a building is a form of risk management. You identify the

council or independent company). However, havi an understanding of these sections, and building having classifications generally, can help you discuss the merits and cost implications of a particular class with the building certifier to the benefit of all parties.

LEARNING TASK 1.1

NATURE OF BUILDINGS AND THEIR CLASSIFICATION

- 1 An old industrial building has been used to store a number of differing types of wholesale goods on palets and raking systems. You have been approached to get council approvals for a redevelopment that will allow most of the building to be used as office space, with a small conference room size included. room also included.
- room also included.
 What is the current classification?
 What will the classification be should the proposed redevelopment go ahead?
 You are on acreage in a country area and have a large family home on that land. There is some discussion that you would like to build a large, 100 m² pergola-type structure, with internal roof

END-OF-CHAPTER FEATURES

Chapter summaries highlight the important concepts covered in each chapter as well as link back to the key competencies.

SUMMARY

The aim of this chapter was to take the reader through a carefully guided exploration of both Volumes One and Two of the NCC. In particular, how they pertain to all 10 classes of buildings as defined by this code, and how the code interrelates with the Australian standards. Reading the NCC and the relevant standards requires experience to ensure that you have covered all the inflections and nuances that are within them. The 2019 edition of the NCC is far superior to the previous renditions in ensuring greater cohesiveness between

Volumes One and Two, making them more user friendly. However, to be fully assured that you have accurately Interpreted the requirements will still require some time. The examples offered in this chapter give you a brief taste of some of the simpler elements of their structure and what you might expect when ensuring compliance. Don't be afraid to explore much deeper into other areas of your projects – be assured, this is critical knowledge for you in your role as either builder or supervisor.

The references and further

reading sections provide you with a list of each chapter's references as well as links to important text and web-based resources.

REFERENCES AND FURTHER READING

Australian Building Codes Board (ABCB), *Evidence of Suitability Handbook 2018*, ABCB. Australian standards, https://infostore.saiglobal.com

National Construction Code, 2019, https://ncc.abcb.gov.au/ncc online/NCC

<u>Guide to the online resources</u>

FOR THE INSTRUCTOR

Cengage is pleased to provide you with a selection of resources that will help you prepare your lectures and assessments. These teaching tools are accessible via http://login.cengage.com.

SOLUTIONS MANUAL

The Solutions Manual includes solutions to endof-chapter worksheets and answers to in text activities.

WORKSHEETS

All chapter worksheets are available as writeable pdfs for your students.

There are additional resources for this text so contact your Cengage Learning Consultant for more information.

COMPETENCY MAPPING GRID

The downloadable competency mapping grid demonstrates how the text aligns to the Certificate IV in Building and Construction (Building).

FOR THE STUDENT

Visit http://www.cengagebrain.com and search for this book to access the bonus study tools available on the Construction Technology for Builders companion website.

The website contains resources for each chapter, including:

• Chapter worksheets

AUSTRALIAN STANDARD UNITS OF MEASURE

The structural principles of construction derive from the school of engineering. As such, these principles require a firm grasp of common mathematical processes and notation. In particular, those of length, area, volume and mass, as well as force and pressure.

The basic units

These are the units with which you will mostly be familiar, those of length, mass and time. These all have lower case letters as their symbols:

- Length: **m** for metre
- Mass: **g** for gram
- Time: **s** for seconds

Larger and smaller values are denoted by prefixes to these basic units; For values less than a million, the prefixes are also in lower case

For values of a million or greater, the prefixes are in capitals, i.e.:

- mega (M) one million $(10^6) \times$ the basic unit
- kilo (k) one thousand or $(10^3) \times$ the basic unit
- milli (m) one thousandth (10⁻³) × times the basic unit (note the '-3') One millimetre (mm) is therefore one thousandth part of a metre. One kilogram (kg) is 1000 grams.

Scientific and engineering notation

Scientific notation was developed so that very large, or very small, numbers could be expressed in a manner that was easier to understand at a glance than one with lots of zeros in front or behind.

For example

In the case of 1 000 there are three zeros after the '1'. This number can be expressed as 1×10^3 which simply means $1 \times 10 \times 10 \times 10$ which equals 1 000.

Note the correlation – the equation has three '10s' in multiply mode, the resultant number has three zeros and so we write 10³.

The little numbers '3' and '6' attached to the 10 in the examples above (i.e. 10³ and 10⁶) are known as *indices* or *index* numbers.

But the number doesn't have to be all zeros. We can apply this approach to any number.

For example

In a number like 64 875 352.0 you would take the first number '6' and count back the number of digits that follow after it until you reach the decimal point. In this case there are seven (7) so our number could look like:

 6.4875352×10^{7}

Only this hasn't really helped us as we still have all the numbers to look at. So, we reduce those numbers down to required or desired *level of accuracy*. In our example, we will use the first four (4) numbers of the original.

So, our long number now looks like this:

 6.488×10^{7}

Note the last '8'. This has come about through what is known as '*rounding*'. If the number after the last figure you want is 5, or greater, then you round up. If less than 5 then you round down (i.e. leave the last number alone).

• So: 6.4875 becomes 6.488

Alternatively, if we had a number like 4.2572, then:

• 4.257**2** becomes 4.257

This applies no matter how many numbers follow after the one you wish to stop at.

- i.e.: 4.25727983 still becomes 4.257 the numbers after the '2' are ignored
- and 6.487**5**7983 still becomes 6.48**8** the numbers after the '5' are ignored

The number 6.488×10^7 is an expression of 'scientific notation'. In 'engineering notation',

however, you will find that only indices divisible by 3 are used. That is:

 1×10^3 ; 1×10^6 , 1×10^9

and so on.

So, our number would look like this:

 $64.88 imes 10^6$

Working from our original number of 64 875 352.0, in engineering notation its best to work from the decimal point outwards. Because in engineering the indices must be divisible by 3, we count in groups of 3.

 $64 \ 875 \ 352.0 \Rightarrow 64.88 \times 10^{6}$

Two groups of three, so the decimal point has moved six places, hence our index number is '6'. **Note**: In using scientific or engineering notation for very small numbers the same basic rules apply.

For example

 $0.001 \Rightarrow 1.0 \times 10^{\scriptscriptstyle -3}$

The decimal point has moved one group of three to the right or 'backwards' so index becomes negative 3 or '-3'.

NO matter how small the number the same approach of counting backwards in groups of three can be used.

```
0.000064875352 \Rightarrow 0.000\ 064\ 875\ 352 \Rightarrow 64.88 \times 10^{-6}
```

Note: In engineering notation you can have up to three numbers to the left of the decimal point in your final expression; i.e.:

 523.34×10^{6}

Units of force

The definition of force is:

```
\mathsf{Force} = \mathsf{mass} \times \mathsf{acceleration}
```

or

F = ma

Where acceleration is measured in metres per second squared or m/s².

Where the acceleration is due to gravity, that acceleration is 9.8 m/s^2 .

This figure is frequently rounded up to 10 m/s^2 for simplicity, plus it adds a bit of 'head room' in our calculations to allow for minor errors.

Hence, the units involved in our equation of force are:

Force = $kg \times m/s^2$ or $kg.m/s^2$ (where the '.' means '×' or multiply)

This is rather a messy looking suffix to put after a number, so it has been given a name after an historical figure associated with it. In this case, Sir Isaac Newton.

So our 'unit of force' derived from this combination is known as a 'newton' or N.

Where:

 $1 \text{ N} = 1 \text{ kg} \times 1 \text{ m/s}^2$

Since gravity is 10 m/s² (when rounded off) the force of 1 kg under the gravitational pull of the earth is:

```
1 \text{ kg} \times 10 \text{ m/s}^2 = 10 \text{ N}
```

or

 $0.1 \text{ kg} \times 10 \text{ m/s}^2 = 1 \text{ N}$

Construction projects are generally much too heavy to use units as small as a newton (N). Instead we generally use kilonewtons (kN), i.e.:

1 kN = 1 000 N

Mass vs weight

Mass and weight are two different concepts which are frequently misused.

• Weight is a force. Mass is not.

Mass is measured and stated in kg but is not a force in itself. Mass, when combined with acceleration gives force. This force we call weight. A stationary 10-kg object in deep space will still have a mass of 10 kg. It will have no 'weight', however, so long as no acceleration is acting upon it.

Therefore, if you have a *load* (a mass) in kilograms (kg) you must multiply it by the gravitational pull of Earth to get the *force* being applied. That is, multiply it by 9.8 or 10 to convert it into newtons of force.

A useful conversion is:

 $10 \text{ kg/m}^2 = 0.1 \text{ kN/m}^2$ (i.e divide kg/m² by 100 to get kN/m²)

Units of pressure

Pressure is a force applied evenly over a defined area. For example, a concrete footing applies pressure to the foundation material, a brick column puts pressure on a footing and so on.

The units for calculating pressure are newtons of force per square metre of area. This is another combination where a relevant historical person's name is use. In this case, French mathematician Blaise Pascal. So, we refer to this combination as a Pascal (Pa). That is:

 $1 Pa = 1 N/m^{2}$ and $1 Pa.m^{2} = 1 N$

As this could be equated to, say, 100 g of sand spread over 1.0 metre square of concrete, this unit of measure is too small for construction purposes. So instead, the units of **kPa** (1 000 Pascals) or **MPa** (1 000 000 Pascals) are used. Most students of construction will already be familiar with MPa as the statement of concrete's compressive strength – e.g. 20 MPa or 25 MPa concrete for paths and basic footings.

INTRODUCTION

Welcome to the first edition of *Construction Technology for Builders*. A long time in the making, this book is designed specifically for advanced students of building, particularly those seeking to gain a builder's licence, understand the building process and structural principles more fully, or seeking to gain a greater grasp of construction management.

There is wealth of material in this text that requires you to engage with various standards and codes. It is important that you have ready access to these throughout your studies. The most significant is the National Construction Code, a multi-volume document of which the first two are frequently referenced in various chapters. Accessing these, and the Australian standards – of which a significant number will need to be sourced – is outlined below.

In addition to the main chapters, each of which aligns with a specific competency unit in the Certificate IV in Building and Construction, there is a glossary of terms and a number of appendices at the end of the book. The glossary you will find invaluable when some of the more technical terms are necessarily used. The appendices provide additional learning or explanatory material, or information such as plans and specification documents that are referenced in the examples and exercises.

A book of this type is a huge undertaking that relies upon a broad range of skilled professionals to create. It is never the work of one person. Yet it remains, arguably, a work in progress, with a further volume yet to be compiled. Feedback on this first edition will be welcomed so that over time it may be improved and eventually cover all the most commonly required areas of study. But that is another story in the making...

Accessing the National Construction Code (NCC)

The NCC is a free to download suite of documents. New editions are compiled every three years with the current edition being 2019. This edition will therefore remain current until May 2022.

Access is via the internet, go to: https://ncc.abcb.gov.au

You will need to create a free login account before you can download the documents.

Once this is done, please download and save to your computer or portable drive the following documents:

- NCC 2019 Volume One
- NCC 2019 Volume Two

These documents do not have an expiry date so you may open them through Adobe or Foxit pdf Readers whenever you require. Due to their size and complexity, they are best viewed electronically rather than in print form.

Accessing Australian standards

Accessing the many Australian standards referenced in the chapters is also via the internet. The complexity is that all Australian standards must be purchased individually – and they are expensive. There are, however, two avenues by which you may gain free access.

Your TAFE or university library

Most TAFE campus or university libraries will have access to the Australian standards database. Your enrolment provides you with free access to any standard you might require.

State and national libraries

For those using this book for study through a private registered training organisation (RTO) or simply for their own benefit (such as an owner builder) there is still a way to access the standards for free.

The Australian federal government has ensured that, due to the excessive cost, the standards have been made available for free through the National Library of Australia and the State Library of each state or territory. Membership is free in each case, and may be completed online. Once a member, you may access the Australian standards database and again download any standard required.

Note 1: This access is paid for by the library or organisation in question. Due to the cost, access is limited, in some cases to only a few (3 or 4) concurrent users at any one time. This means you should access and download the standards you want onto your computer and then log off as early as you can, otherwise others cannot get into the system.

Note 2: Australian standards are best viewed through Foxit pdf Reader instead of Adobe. You will have less issues with reading and exploring them with that application. Foxit pdf Reader is freeware that comes as part of the standard software package on many Windows PCs from major companies such as HP, Acer and ASUS. It may also be downloaded free from the developer's website: https://www.foxitsoftware.com/pdf-reader/

National Association of Steel-framed Housing (NASH) standards

These standards are referred to only in passing, so you do not need to access them in any specific manner. However, if you require them you will most likely have to pay, or find a library that holds them in hard or single access electronic copy. Some TAFEs and universities that deliver construction-based courses do hold them, so it is best to ask before having to purchase.

Australian standard units of measure

The following pages outline the standard units of measure used in Australia and New Zealand (and many other countries). You should refer to this when dealing with any of the chapters that involve calculations, particularly Chapters 12 and 13 that deal with structural principles.

ABOUT THE AUTHOR

Glenn Costin PhD, BEd, BA, Cert IV Building and Construction, Cert IV TAE, Certificate of Trade, Carpentry & Joinery, is currently a Senior Lecturer within Deakin University's School of Architecture and Built Environment. Prior to this Glenn was at Riverina Institute of TAFE for 24 years where his duties included delivery of all levels of Construction trade, post trade and pre-apprenticeship courses. In addition Glenn taught across a range of fields and courses including computing, environment, social inclusion and arts. Glenn was also heavily involved in Worldskills Australia as the chief judge and national and regional designer of carpentry for a decade. Outside of education, Glenn designs heritage renovations, additions and new homes from both a sustainability and energy efficiency or zero carbon perspective. In addition, Glenn has worked internationally in a range of countries and travelled extensively.

ACKNOWLEDGEMENTS

Dr. Igor Martek PhD, University of Melbourne; Master of International Relations, Australian National University; MBA, AGSM University of NSW; Bachelor of Architecture (Hons.) University of Melbourne School of Architecture and Built Environment, Deakin University.

CH 2 Legal requirements for building and construction projects CH 4 Work health and safety

Sharon Rumble is a CPA qualified accountant who has been teaching with TAFE NSW for the last 10 years and is currently teaching small business finances for a range of TAFE NSW qualifications including Certificate IV Building and Construction, Certificate IV New Small Business and Certificate IV Leadership and Management.

CH 9 Small business finances

Josef Fritzer Bachelor of Building, and Bachelor of Housing, University of Western Sydney, is qualified in assessment planning, designing and validation and has taught in the vocational sector **Chapter learning tasks**

Worksheets

Glen Rodgers Bachelor of Architecture (Honours), Bachelor of Arts (Anthropology), Cert IV Training and Assessment, Cert IV NatHERS assessment, is a sessional tutor in the Deakin University School of Engineering and Built Environment and a registered architect with a broad range of experience in ecologically sustainable design, community development, contract administration, and client liaison.

CH 11 Simple building sketches and drawings

UNIT CONVERSION TABLE

Pressure		Multiply by		Equals
kPa		0.145		psi (lbs/in ²)
Psi (lbs/in ²)		6.895		kPa
kPa		4		Inches WG
Inches WG		0.25		kPa
kPa		10		mb
mb		0.1		kPa
Inches Hg		13.6 x 0.25		kPa
Heat energy & p	ower	Multiply by		Equals
MJ		947.8		BTU
BTU		0.001055		MJ
kWh		3.6		MJ
MJ		0.2778		kWh
kWh		3412		BTU
BTU		0.2931		kWh
MJ/m ³		26.76		BTU/cu.ft
BTU/cu.ft		37.37		MJ/m ³
Volume		Multiply by		Equals
m ³		35.32		cu.ft
cu.ft		0.128		m ³
m ³		1000		L
Imp. Gallon		4.546		L
L		0.22		Imp. Gallon
US Gallon		3.785		L
L		0.2642		US Gallon
Imp. Gallon		0.8326		US Gallon
US Gallon		1.201		Imp. Gallon
Area		Multiply by		Equals
mm ²		0.01		cm ²
m ²		10.764		ft ²
ft ²		0.0929		m ²
Length		Multiply by		Equals
m		3.281		ft
ft		0.3048		m
		Abbreviations		
kPa	(kilopascals)		m ³	(cubic metres)
psi	(pounds per squa	are inch)	cu.ft	(cubic feet)
Inches WG	(inches water gau	uge – also "WG)	m ²	(square metres)
Inches Hg	(inches mercury	– also ["] Hg)	mm ²	(square millimetres)
mb	(millibars)		ft ²	(square feet)
MJ	(megajoules)		L	(litres)
kWh	(kilowatt hour)			
BTU	(British thermal u	inits)		

LIST OF FIGURES

1.1	SAI Global's interactive NCC House,	
	showing the Australian standards involved	_
	in various building elements	5
1.2	Regulatory path leading to the adoption	_
	of a standard (Australian or otherwise)	5
1.3	Class 1a: suburban home	8
1.4	Class 1b: boarding or guest houses and	-
	hostels	8
1.5	Class 6: shops, restaurants and cafés	9
1.6	Class 10c: bushfire shelters	11
1.7	Hierarchy of rigour	22
1.8	Apparatus for testing wire balustrades	23
4.1	The structured risk management process	
	cycle	77
4.2	Hazard impact (risk assessment) matrix	78
4.3	Sources of safety management information	79
4.4	WHSMS cycle of risk assessment and	
	management	81
4.5	Hierarchy of measures for controlling hazards	82
4.6	Five-step risk control plan implementation	
	process	83
4.7	Steps in the ongoing repeating loop of	
	WHS risk control, with consultation at	
	every stage	86
5.1	An orthographic drawing	91
5.2	Isometric and oblique drawings	91
5.3	Two-point perspective	92
5.4	Typical construction drawing elevation	93
5.5	Example of an initial sketch for a house	93
5.6	Example of a preliminary drawing developed	
	using CAD	94
5.7	Melbourne Exhibition where the first Federal	
	Parliament met on May 9, 1901	94
5.8	Example of a housing development plan	94
5.9	Development plan detail	95
5.10	Domestic site plan with set-backs shown	96
5.11	Location plan: Australian Technology Park,	
	Sydney	96
5.12	Example of a CAD drawing	97
5.13	A floor plan	99
5.14	East elevation of a building	100
5.15	Section A–A	101
5.16	Detail 2–12	102
5.17	Footing and subfloor layout	102
5.18	Bracing diagram and associated	
-	specification or table	103
5.19	Shadow diagram	104
5.20	Electrical wiring diagram	105
5.21	Example of a landscape plan	105
		100

5.22 Example of a door and window schedule

		5.23	Internal elevation symbol	107
b	_	5.24	Variations in expressing window and	100
	5		door opening directions	108
	_	5.25	Typical symbols for fixtures	108
	5	5.26	Common material rendering	109
	8	5.27	Line types	109
	0	5.28	Partial plan drawing showing location of	100
	8		sectional view B-B	109
	9	5.29	Common abbreviations	110
	11	5.30	Building envelopes as defined on a	
	22		development (subdivision) plan	113
	23	5.31	Example of vertical building envelope	
			requirements	113
	77	5.32	Typical modern narrow set-back applied	
	78		to all the houses in the street	113
on	79	5.33	Set-backs must be measured at 90 degrees	
			from the boundary	114
	81	5.34	Easement examples	114
ards	82	5.35	Magnetic North vs True North	115
n		5.36	A line of True North runs longitudinally	
	83		north and south as shown	115
		5.37	Solar access during the seasons	115
		5.38	North at 7 o'clock position	116
	86	5.39	North at 4 o'clock position	116
	91	5.40	Example datum mark	116
	91	5.41	Another datum mark	117
	92	5.42	Reduced levels (R.L.s)	117
	93	5.43	Contour lines representing two small hills	117
	93	5.44	Contour lines on site plan	118
bed		5.45	Example geology overlay on a site plan	
	94		for a proposed development	119
eral		5.46	Example of cross-section identification	120
	94	5.47	Example floor plan detail	120
	94	5.48	Example floor plan detail with material	
	95		representations identified	121
	96	5.49	Example elevation – note 'hopper' style	
k,			windows (hinged at bottom) to gable end	122
	96	5.50	Example elevation – with finishes	
	97		described. Note glazing thicknesses also	
	99		described.	122
	100	5.51	Section A–A	122
	101	5.52	Revision identity in title box	123
	102	5.53	Rev cloud and triangle	124
	102	6.1	Example of a typical progress claim form	137
		6.2	Prime cost and provisional sum allowances	140
	103	6.3	Example variation form	141
	104	6.4	Notice of application for planning permit	147
	105	6.5	BIM meeting on site	148
	105	6.6	Silt fencing near waterways	149
	106	6.7	Site diaries	151

6.8	Example site diary page from Tenderfield	152
6.9	Electronic and 'cloud'-based diaries	151
6.10	Example site instruction	154
6.11	The Western Australian builders' technical	
	quality assurance checklist	160
6.12	Example inspection test plan	160
6.13	ITP Preliminary checklist	161
6.14	Path to practical completion – AS 4000	168
6.15	Spreadsheet version of a PCI checklist	169
6.16	User manual	171
6.17	Form BA18	171
6.18	Sewerage service diagram, Sydney, NSW	172
7.1	Administering the law in Australia	190
8.1	Typical tender submission timeline	204
9.1	Financial management process	215
10.1	Automatic optical level 'dumpy' with	
	staff in background	234
10.2	Tribrach adjustment screws	235
10.3	Blister or bubble level	235
10.4	Visualising a 'T' over the tribrach	236
10.5	Rotate screws by moving thumbs towards	
	each other or	236
10.6	by rotating thumbs away from each	
	other	236
10.7	Adjusting the first two screws for level –	
	by moving thumbs towards or away from	
	each other, one screw will go up and the	
	other down	236
10.8	Adjusting the third screw only to bring	
	the bubble to centre	237
10.9	Parallax error eliminated by image being	
	focused exactly upon the reticule	237
10.10	Parallax error present because focal	
	image is displaced – in front or behind –	
	from the reticule	238
10.11	Survey staff	238
10.12	Increments on the traditional surveyor's staff	238
10.13	Sight of staff through automatic level	239
10.14	Electronic self-levelling	239
10.15	Pendulum	239
10.16	Grade levels	240
10.17	Topcon GM-50 Geodetic Measurement	
	Station	240
10.18	Standard analogue or Vernier theodolite	241
10.19	Modern digital theodolite	241
10.20	Optical plummet (left), laser plummet	
	(right)	241
10.21	Theodolite - Leica TCR1205 R100 TPS Total	
	Station EDM. Reflectorless total stations	241
10.22	Laser warning sign	243
10.23	Typical laser classification labelling	243
10.24	The line of collimation projects like a	
	large, flat, level disc	244
10.25	Determining the difference in height	
	or elevation at various locations	245
10.26	Typical rise and fall booking sheet	245

10.27		246
10.28	Descriptions of key surveying terms	
	and elements	246
	Intermediate sightings	247
10.30	Plan of a rectangular strip footing	
	pegged for survey and location of	
	instrument stations	247
10.31	The slope of the land showing the	
	need for two instrument stations	248
10.32	1st station and backsight to TBM	248
10.33	8	248
10.34	1st station foresight. Once taken and	
	booked, the instrument may be moved.	249
10.35	Booking of 1st station foresigh	249
10.36	Backsight from 2nd station to NW peg	
	(previous foresight)	249
10.37	Booking of sighting from 2nd station	
	to NW peg (previous foresight)	250
10.38	Intermediate sights and notes	
	completed	250
10.39	Taking the intermediate sights	
	(NE and SE) and foresight (SW)	250
10.40	Entering the rise and fall developed	
	from each sighting. Green loops cluster	
	the sightings from a single instrument	
	station.	251
10.41	Entering the calculated reduced levels	
	(RLs)	251
	Booking checks	252
10.43	Setting up for a two-peg test	253
10.44	5	
	between the two pegs	253
10.45	A correctly calibrated instrument	
	establishing a level line height	254
10.46	Level line height established with	
	upward pointing instrument	254
10.47	Level line height established with an	
	instrument pointing down	255
10.48	Locating the 2nd station	255
10.49	Taking readings from the 2nd station	255
10.50	The difference between 1st and 2nd station	
	readings	256
10.51	Level sighting up: difference in heights	
	unequal	256
10.52	Level sighting down: difference in heights	
	unequal	256
10.53	Correctly calibrated level: differences in	
	heights equal	257
10.54	Theodolite in face left. Note screen is	
	facing the operator and broader, rounded,	
	element of the frame – known as the	
	vertical circle or vertical compensator –	
	is on the operator's left-hand side.	258
10.55	Four-peg test arrangement	259
10.56	Laser four-peg test – booking the results	
	and carrying out checks	259

10.57	Closed traverse booking sheet showing	
	checks. The first RL, when subtracted	
	from the last RL, should equal zero or be	
	within the allowable tolerances or	
	'misclose'.	260
10.58	Height of collimation booking example	261
10.59	Checking height of collimation booking	
	of open traverse	262
10.60	The 3:4:5 triangle always gives a 90°	
	base angle	264
10.61	Proving Pythagoras' theorem	264
10.62	Increasing the size of a 3:4:5 triangle	
	using ratios or multipliers	265
10.63	Using the 3:4:5 principle to develop a	200
	90° corner	265
10.64	Naming the sides of a right-angled	200
	triangle based upon the angle under	
	consideration	265
10.65	Trigonometric ratios for 30° right-angled	200
10.00	triangle	266
10.66	Trigonometric ratios for a larger	200
10.00	30° right-angled triangle	266
10.67	Determining the horizontal distance from	200
10.07	measured slope distance and angle	267
10.68		207
10.00	Sketching the information as a	267
10.00	trigonometric problem	267
10.69	0	067
10.70	pitch of a sloping site	267
10.70	8	200
10.71	trigonometric problem	268
10.71	Standard notation of a non-right-angled	200
10.70	triangle	268
10.72	0 0	000
10.70	triangle Des files	268
	Profiles	270
10.74		070
40.75	90° corner	270
	Optical square	271
10.76	Checking for square by measuring	071
	diagonals for equal	271
10.77	The folding building square. The blue arm	
	is fixed by a bolt at centre of the yellow	
	arm and allowed to swing freely. A hole	
	is drilled towards the end of the blue	
	arm, and equally through the ends of	
	the yellow. Any triangle formed within a	
	semicircle, for which the hypotenuse is the	
	diameter, is a 90° triangle (Figure 10.77a).	271
10.78	Squaring a rectangular set out	272
	Boundary offset	273
10.80		273
	Establishing 90° line from boundary offset	273
10.82	Approximate position of additional	
	corner pegs	273
10.83	Establishing profiles	274
10.84	Transferring lines to profiles	274
10.85	Checking for square using the diagonals	274

		10.86	Locating additional profiles	274
			Location of additional wall lines on profiles	274
		10.88	Typical application of strings and information for a concrete slab, timber-	
	260		framed and clad building	275
	261	10.89	Transferring lines to profiles	275
		10.90	Profile information for slab on ground:	
	262		cavity brick	275
		10.91	Profile information for strip footing:	
	264		brick veneer	275
	264	10.92		276
		10.93	Plan view of cut and fill site	277
	265	10.94	Elements of the 'cut' portion of a cut and fill site	278
	265	10.95	Cross-section of the 'cut' of a cut and fill	270
	205	10.95	site depicted in Figure 10.93	278
		10.96	Elements of the 'fill' portion of a cut	270
	265	10.50	and fill site	279
	200	10.97		215
	266	10.07	depicted in Figure 10.93	279
	200	10.98	Trapezoid area calculation	279
	266		Volume of fill estimated using end sections	279
	200		Estimating excavation volumes	275
	267		using multiple cross-sectional areas	280
	207	10,101	Contour lines representing two small hills	281
	267		Direct plotting of contour lines: chain	-01
			lines and offsets; measured bearings	282
	267	10.103	Indirect plotting of contour lines:	
			traverse and cross-section lines	282
	268	10.104	The grid	283
			Interpolation using a ruler	283
	268		The radial graph	284
		10.107	The radial graph used to divide a grid	
	268		line into 19 parts and plot contours	284
	270	10.108	Graphical representation of proportioning	
			the grid line based upon the vertical	
	270		separation of two grid points	285
	271	10.109	Mathematically plotting the contour	
			intersection with the grid line	285
	271	10.110	Contours plotted onto the grid	286
			Excavation plotted onto the grid	286
		10.112	Interpolation of the excavation corner	
			spot height	287
		10.113	Heights of the corners of the excavation	
			prisms	287
			Spot height duplication in excavation prisms	287
9			The longitudinal section	290
•	271		Invert levels for pits and pipe connections	291
	272	10.117	Batter ratio of 1.25 to 1: horizontal	
	273		first, vertical always 1	292
	273	10.118	Depiction of path going from cut to	000
C	273	10.110	fill and associated cross-sections	292
	070	10.119	Cross-sections associated with	202
	273	10 100	Figure 10.118, showing batters Cross-sections of basic excavation	293
	274 274		Cross-sections of basic excavation Cross-sections of a more complex	293
	274 274	10.121	excavation	293
	L/4		CACGYGLIUI	62.7

293

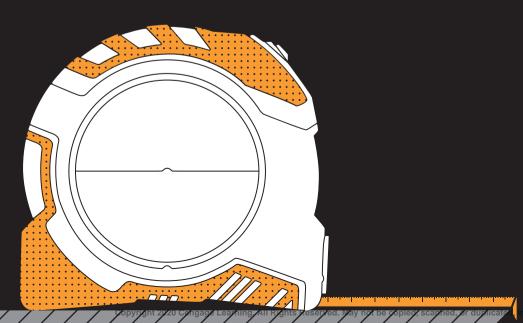
excavation

11.1	Example architectural floor plan	299
11.2	Example structural engineering drawing	299
11.3	Example architectural specification	
	excerpt	300
11.4	Structural engineering drawings	
	construction detail	300
11.5	AS 2870 excerpt for reinforcement	500
11.5		301
	lapping	
11.6	Isometric	302
11.7	Oblique	302
11.8	Example of pre-printed/scaled site	
	instruction	303
11.9	Example of phone and tablet-based digital	
	applications	304
11.10	Example of Sketchup 3D construction	
	detail	304
11.11	Architectural drawings excerpt showing	
	FFL, dimensions and flooring notations	305
11.12	Architectural specification flooring	305
11.12	Structural engineering setdown detail	305
		305
11.14	Structural engineering drawings rib	000
	beam detail	306
11.15	Ensuite setdown preliminary floor plan	306
11.16	Ensuite setdown preliminary oblique drawing	307
11.17	Detail reference identifiers	307
11.18	Direction of view indicators for sketching.	
	Basic arrow or just a line running in the	
	direction of view.	307
11.19	Depiction of reduced levels	307
11.20	Dimensioning conventions	308
11.21	Ensuite setdown preliminary construction	000
11.21	detail sketch	308
11.22		309
	Ensuite setdown floor plan	
11.23	Ensuite setdown oblique drawing	309
11.24	Ensuite setdown construction detail	309
11.25	Drawing title blocks	310
11.26	Ensuite setdown floor plan final sketch	311
11.27	Ensuite setdown oblique final sketch	311
11.28	Ensuite setdown construction detail	
	final sketch	311
12.1	Characteristics of a force	315
12.2	Forces acting on a house	316
12.3	Vector addition: 'head-to-tail' order	
	makes no difference to the result	316
12.4	Loads acting on a static component	317
12.5	Vector solution showing summing to zero	317
12.5	Examples of stress upon materials	318
12.7	Bending stresses on a beam under load	319
12.8	Torsional stress	319
12.9	Bearing stress produced by a bolt from	
	two plates under tension	319
12.10	Basic stress strain graph	319
12.11	Simplified stress strain graph for mild steel	320
12.12	Examples of loads on a typical two-storey	
	construction	320
12.13	Wind damage to house due to hold-down	
	failure	322

12.14		
	materials	323
12.15	Earthquake risk map of Australia	324
12.16	Typical load paths on a domestic house	325
12.17	Lateral load paths	326
12.18	Point loads (note strapping to prevent	
	uplift)	326
12.19	Free-body diagram showing loads on a	
	beam	326
12.20	Uniformly distributed load (UDL) on a	
	beam. An alternative depiction of UDL	
	is shown at bottom right.	327
12.21	Uniformly varying load and considered	027
12.21	point of action	327
12.22	•	527
12.22	beam and centred point load	328
12.23	-	520
12.23	point load: solving around 'A'	328
12.24	-	520
12.24		329
10.05	needs less effort to hold up the load.	329
12.25		
	point load: solving around 'B'	329
12.26	8	330
12.27	8	330
12.28	8	330
12.29	1	331
12.30	0	
	bracing	331
12.31	Lateral forces on single solid timber	
	bracing	332
12.32	51 1	332
12.33	8	
	compression components	333
	Common truss types used in Australia	333
	Parallel chord truss	333
12.36	(a) Gang-nail plates	334
((b) Internal fish plates	334
(c) External fish plates	334
((d) Timber joints	334
12.37	The two axes of a component regarded in	
	calculating sectional properties	336
12.38	Identifying the location of the centroid	
	on various sectional shapes	336
12.39	Beam alignment and bending	337
12.40	Beam alignment and relation to axes	337
12.41	The mechanics of an 'l' beam	338
		000
12.42		000
12.42	Symmetrical sections showing the	000
12.42	Symmetrical sections showing the centroid as equally distanced from both	338
12.42	Symmetrical sections showing the centroid as equally distanced from both the top and bottom fibres of the beam	
	Symmetrical sections showing the centroid as equally distanced from both the top and bottom fibres of the beam	
12.43	Symmetrical sections showing the centroid as equally distanced from both the top and bottom fibres of the beam Extreme fibres at unequal distance from centroid	338 338
12.43 12.44	Symmetrical sections showing the centroid as equally distanced from both the top and bottom fibres of the beam Extreme fibres at unequal distance from centroid Beam orientation and section modulus	338
12.43 12.44	Symmetrical sections showing the centroid as equally distanced from both the top and bottom fibres of the beam Extreme fibres at unequal distance from centroid Beam orientation and section modulus Flexible ruler under load depicting the	338 338
12.43 12.44	Symmetrical sections showing the centroid as equally distanced from both the top and bottom fibres of the beam Extreme fibres at unequal distance from centroid Beam orientation and section modulus Flexible ruler under load depicting the deflection of a column under load	338 338 338
12.43 12.44 12.45 12.46	Symmetrical sections showing the centroid as equally distanced from both the top and bottom fibres of the beam Extreme fibres at unequal distance from centroid Beam orientation and section modulus Flexible ruler under load depicting the deflection of a column under load	338 338 338 339
12.43 12.44 12.45 12.46 12.47	Symmetrical sections showing the centroid as equally distanced from both the top and bottom fibres of the beam Extreme fibres at unequal distance from centroid Beam orientation and section modulus Flexible ruler under load depicting the deflection of a column under load Simple beams	338 338 338 339 340

12.49		
	under load	34
	Horizontal shear acting on beam fibres	34
	Vertical shear action	34
12.52	Acceptable locations for penetrations	34
12.53	Rigid and free end fixtures: effect	
	on deflection	342
12.54	Camber in beams and bottom chord of	
	truss	342
12.55	Typical location of radius of gyration for	
	symmetrical columns	342
12.56	Axial load	343
12.57	Non-axial load	343
12.58	Non-symmetrical column buckling	
	under eccentric loading	343
12.59	Columns failing under crushing load	344
	a) Column fixed top and bottom	344
	b) Column pinned top and bottom	344
	c) Column fixed at base, pinned at top	34!
	d) Column pinned at base only	34!
12.61		54,
12.01	from roof trusses applied to external walls	34
12.62		54.
12.02	on ground	34
12.63	0	34:
12.03	raft slab	346
10.04		
	One-way suspended slab	346
12.65		2.4
	reinforcement arrangement	34
	Forces acting on a retaining wall	34
	a) Gravity walls	348
	b) Inclined walls	348
	c) Cantilever walls	348
12.68	Cantilever retaining wall tied into a	
	garage slab footing	348
13.1	Wind regions derived from AS/NZS 1170.2	35!
13.2	Partial footing layout	358
13.3	Elevation showing included column	
	and area where new and old meet	359
13.4	and area where new and old meet BAL ratings showing proximity to the	359
13.4		359 360
13.4 13.5	BAL ratings showing proximity to the	
	BAL ratings showing proximity to the flame zone	360
13.5	BAL ratings showing proximity to the flame zone NCC-declared alpine areas in Australia	360
13.5	BAL ratings showing proximity to the flame zone NCC-declared alpine areas in Australia Earthquake hazard map for Northern	360
13.5	BAL ratings showing proximity to the flame zone NCC-declared alpine areas in Australia Earthquake hazard map for Northern Territory. Note the 'hot spot' at	360 361
13.5 13.6	BAL ratings showing proximity to the flame zone NCC-declared alpine areas in Australia Earthquake hazard map for Northern Territory. Note the 'hot spot' at Tennant Creek. Determining the terrain category	360 363 363
13.5 13.6 13.7	BAL ratings showing proximity to the flame zone NCC-declared alpine areas in Australia Earthquake hazard map for Northern Territory. Note the 'hot spot' at Tennant Creek. Determining the terrain category Site plan and photograph of terrain for	360 362 362 362
13.5 13.6 13.7 13.8	BAL ratings showing proximity to the flame zone NCC-declared alpine areas in Australia Earthquake hazard map for Northern Territory. Note the 'hot spot' at Tennant Creek. Determining the terrain category Site plan and photograph of terrain for proposed house	360 362 362 362
13.5 13.6 13.7 13.8 13.9	BAL ratings showing proximity to the flame zone NCC-declared alpine areas in Australia Earthquake hazard map for Northern Territory. Note the 'hot spot' at Tennant Creek. Determining the terrain category Site plan and photograph of terrain for proposed house Topographic class	360 362 362 362 364
13.5 13.6 13.7 13.8 13.9 13.10	BAL ratings showing proximity to the flame zone NCC-declared alpine areas in Australia Earthquake hazard map for Northern Territory. Note the 'hot spot' at Tennant Creek. Determining the terrain category Site plan and photograph of terrain for proposed house Topographic class Explanation of shielding	360 362 362 364 364 364
13.5 13.6 13.7 13.8 13.9 13.10 13.11	BAL ratings showing proximity to the flame zone NCC-declared alpine areas in Australia Earthquake hazard map for Northern Territory. Note the 'hot spot' at Tennant Creek. Determining the terrain category Site plan and photograph of terrain for proposed house Topographic class Explanation of shielding AS 4055, Table 2.2	360 362 362 364 364 364 364
13.5 13.6 13.7 13.8 13.9 13.10 13.11 13.12	BAL ratings showing proximity to the flame zone NCC-declared alpine areas in Australia Earthquake hazard map for Northern Territory. Note the 'hot spot' at Tennant Creek. Determining the terrain category Site plan and photograph of terrain for proposed house Topographic class Explanation of shielding AS 4055, Table 2.2 Deck elevation and plan	360 362 362 364 364 364 364 364
13.5 13.6 13.7 13.8 13.9 13.10 13.11 13.12 13.13	BAL ratings showing proximity to the flame zone NCC-declared alpine areas in Australia Earthquake hazard map for Northern Territory. Note the 'hot spot' at Tennant Creek. Determining the terrain category Site plan and photograph of terrain for proposed house Topographic class Explanation of shielding AS 4055, Table 2.2 Deck elevation and plan Floor plan	360 361 362 364 364 364 364 369 375
13.5 13.6 13.7 13.8 13.9 13.10 13.11 13.12 13.13 13.14	BAL ratings showing proximity to the flame zone NCC-declared alpine areas in Australia Earthquake hazard map for Northern Territory. Note the 'hot spot' at Tennant Creek. Determining the terrain category Site plan and photograph of terrain for proposed house Topographic class Explanation of shielding AS 4055, Table 2.2 Deck elevation and plan Floor plan East and west elevations	360 362 362 364 364 364 369 379 379
13.5 13.6 13.7 13.8 13.9 13.10 13.11 13.12 13.13	BAL ratings showing proximity to the flame zone NCC-declared alpine areas in Australia Earthquake hazard map for Northern Territory. Note the 'hot spot' at Tennant Creek. Determining the terrain category Site plan and photograph of terrain for proposed house Topographic class Explanation of shielding AS 4055, Table 2.2 Deck elevation and plan Floor plan	360 361 362 364 364 364 364 369 375

0.41	13.17	01	378
341	13.18	AS 1684.2, Table 49	379
341	13.19	AS 1684.2, Table 50	380
341	13.20		380
341	13.21	Determining joists for a deck that is	
		more than 1 m off the ground	381
342	13.22	Uplift	383
	13.23	Net uplift pressure, kPa	383
342	13.24	•	383
	13.25	Uplift capacity and bolts	384
342	13.26	Uplift capacity of floor joist tie-down	
343		connections	384
343	13.27	• •	000
0.4.0		post-tensioning tendons	386
343	13.28	Unbonded multi-strand post-tensioning	
344		tendon showing end anchor and	000
344		wedge detail	386
344	13.29		200
345	10.00	single-strand unbonded tendon	386
345	13.30		207
245	10.01	strategically 'draped' through the slab	387
345	13.31	Bonded tendons strategically 'draped'	
345		ready for the concrete pour and post-tensioning	387
540	13.32	Pre-tensioning system for casting of a	30/
346	13.32	beam	387
340 346	13.33		388
540	13.33		388
347	13.35	Metal composite floor slab with shear	500
347	10.00	studs	388
348	13.36		388
348	13.37	· –	391
348	13.38	Bottom plates supporting single or	001
		upper storey	392
348	13.39	Top plates – sheet roof	394
355	13.40	Wall studs	395
358	13.41	Jamb studs	395
		Lintels	395
359	13.43	Pressure on area of elevation	397
	13.44	Area of elevation	397
360	13.45	Bracing sketch plan	399
361	13.46		
		in shear	399
	13.47	Truss types for common roof	
361		configurations	403
362	13.48	Coupled roof	404
	13.49	Non-coupled roof	404
363	13.50	Identifying the roof loads on a strutting	
364		beam	405
364	13.51	Strutting/hanging beams	405
365	13.52	Ridge beam and strutting beam locations	406
369	13.53	Ridge beam in an non-coupled roof	407
375	13.54	A manufacturer's roof beam span	
376		selection	408
376	13.55	Strutting beam and load bending	
377		diagram	409


13.56	Tilt-up shear wall panel	413	14.11	Angle of incidence and effective area	
13.57	Portal frame restraint details	413		for solar heat gain. Left is 0° incidence;	
13.58	Elements of a typical portal frame	413		right is 55° incidence.	438
13.59	Determining fixing requirements	415	14.12	Double-glazed window	439
13.60	Weatherboard fixing requirements	416	14.13	Triple-glazed window	439
14.1	Climate zone map Australia-wide	425	14.14	Aluminium and plastic composite	
14.2	The Tropic of Capricorn and implications			thermally broken window frame	440
	for solar access	426	14.15	Thermal gains and losses in the	
14.3	Insulation of floor slabs	430		standard house – winter and summer	
14.4	Latitude and longtitude	433		cycles	444
14.5	Magnetic North vs True North for most		14.16	Typical suspended floor insulation design	447
	of Australia	434	14.17	NCC glazing calculator	448
14.6	Magnetic North vs True North for part		14.18	Example NatHERs Certificate	450
	of Western Australia	434	14.19	Sample BASIX Certificate	451
14.7	9 am wind rose for Hobart Airport	434	15.1	Costs of deconstruction across the	
14.8	Typical sun paths for regions south of			four building types	471
	the Tropic of Capricorn	435	1 5.2	Images of Australia derived from	
14.9	Seasonal solar angles for Adelaide, SA	436		remotely sensed data, showing the	
14.10	Plotting exact solar access by day			proportion of bare soil for April	
	and time	437		(a) 2006 and (b) 2015	472

COLOUR PALETTE FOR TECHNICAL DRAWINGS

Colour name	Colour	Material
Light Chrome Yellow		Cut end of sawn timber
Chrome Yellow		Timber (rough sawn), Timber stud
Cadmium Orange		Granite, Natural stones
Yellow Ochre		Fill sand, Brass, Particle board, Highly moisture resistant particle board (Particle board HMR), Timber boards
Burnt Sienna		Timber - Dressed All Round (DAR), Plywood
Vermilion Red		Copper pipe
Indian Red		Silicone sealant
Light Red		Brickwork
Cadmium Red		Roof tiles
Crimson Lake		Wall and floor tiles
Very Light Mauve		Plaster, Closed cell foam
Mauve		Marble, Fibrous plasters
Very Light Violet Cake		Fibreglass
Violet Cake		Plastic
Cerulean Blue		Insulation
Cobalt Blue		Glass, Water, Liquids
Paynes Grey		Hard plaster, Plaster board
Prussian Blue		Metal, Steel, Galvanised iron, Lead flashing
Lime Green		Fibrous cement sheets
Terra Verte		Cement render, Mortar
Olive Green		Concrete block
Emerald Green		Terrazzo and artificial stones
Hookers Green Light		Grass
Hookers Green Deep		Concrete
Raw Umber		Fill
Sepia		Earth
Vandyke Brown		Rock, Cut stone and masonry, Hardboard
Very Light Raw Umber		Medium Density Fibreboard (MDF), Veneered MDF
Very Light Van Dyke Brown		Timber mouldings
Light Shaded Grey		Aluminium
Neutral Tint		Bituminous products, Chrome plate, Alcore
Shaded Grey		Tungsten, Tool steel, High-speed steel
Black		Polyurethane, Rubber, Carpet
White		PVC pipe, Electrical wire, Vapour barrier, Waterproof membrane

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. WCN 02-200-202

PART 1 codes and standards

whole or in part. WCN 02-200-202

BUILDING CODES AND STANDARDS

Chapter overview

Australia, like many other parts of the world, has moved a long way forward from just 'knocking together' a house, shed, fence, or indeed any other structure. Today's buildings must comply with a raft of standards and codes. This chapter explores these codes and standards: in particular, the National Construction Code or NCC.

Elements

This chapter provides knowledge and skill development materials on how to:

- 1 access and interpret relevant codes and standards
- 2 classify buildings
- 3 analyse and apply a range of solutions to a construction problem for compliance with the NCC
- 4 apply fire protection requirements.

To gain the most from this chapter, you must have access to the National Construction Code, Volumes One and Two. These codes are available for free download, after free registration from the following internet site: https://ncc.abcb.gov.au/ncc-online/NCC.

Download the following documents:

- NCC 2019, Volume One (Building Code of Australia Class 2 to Class 9 Buildings)
- NCC 2019, Volume Two (Building Code of Australia Class 1 and Class 10 Buildings)

Introduction

This chapter introduces Volumes One and Two of the National Construction Code (NCC), the legal guide by which buildings constructed in Australia are governed. This is a large and complex document which will take you time to become confident using. The chapter begins with a brief history and overview of the NCC and Australian standards as a whole. The next section then discusses the different classifications of buildings, it being these classes that determine which part of the code applies to any given structure. The following two sections provide guidance on accessing and interpreting the various clauses of the code, particularly how to identify the standards relevant to your project. These sections also explore the two pathways to meeting the NCC's requirements as a whole; i.e. through the 'deemed-to-satisfy' provisions or by way of a 'Performance Solution'. The final section of the chapter will look at fire protection measures as outlined in both volumes.

History and purpose of the National Construction Code

Before looking too deeply into the National Construction Code (NCC), it is worth gaining a basic understanding of its history and purpose. Australia's search for a national set of standards and codes began in 1965, but it was not until 1988 that the first Building Code of Australia (BCA) volume was published; and it wasn't until the mid 1990s that all states and territories actually became signatories to the code. That is, Australia's construction codes are actually a very recent regulatory innovation. Up to this point, the BCA was what is called a 'prescriptive' code, meaning that it defined the what, when and how of all building works and, in so doing, set minimum building standards.

In 1996, the BCA96 was introduced; this reflected an important shift in the aim of the document as it was now 'performance'-based rather than prescriptive; thereby allowing alternative approaches and encouraging innovation. Again, there was a delay until 1998 before all states and territories adopted this new code. In 2003, annual amendment cycles were introduced and so from 2004 the BCA became BCA 2004, BCA 2005 and so on.

In 2011, the regulations governing the BCA and the Plumbing Code of Australia (PCA) were consolidated, giving rise to the National Construction Code or NCC. As of 2016, the annual amendment cycle was changed to a three-year cycle, reflecting both the acceptance and the stability of the current codes. The NCC consists of three main volumes, and two secondary texts as follows:

Primary volumes:

- NCC, Volume One Building Code of Australia Class 2 to Class 9 Buildings
- NCC, Volume Two Building Code of Australia Class 1 and Class 10 Buildings
- NCC, Volume Three Plumbing Code of Australia (All building classifications).

Secondary texts:

- Guide to NCC Volume One (provides clarification, illustrations and examples)
- Consolidated Performance Requirements (provides guidance on the above volumes).

Note: Only Volumes One and Two are discussed in this chapter.

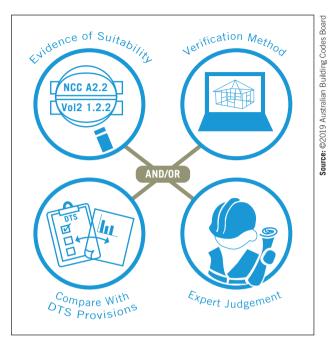
The purpose of the NCC is to provide minimum standards by which buildings and associated structures (fences, pools and the like) may be constructed, with consideration to:

- occupant health and safety
- amenity and accessibility
- bushfire survivability
- sustainability and energy efficiency
- structural integrity
- climate and geographical location
- innovation.

As a 'national' construction code, the above is applicable to all Australian states and territories. It is also the avenue by which relevant Australian standards are given authority; i.e. unless an Australian standard is called up by the NCC it has guidance value only to the construction industry.

To ensure that the NCC's purpose is based upon sound factual data, its elements are constantly tested for workability, practicality and effectiveness – being restrictive only so much as to be in the public's and industry's best interests. This is exampled by the NCC being a 'performance'-based document, with two pathways of compliance: deemed-to-satisfy (DTS) provisions and Performance Solutions.

Deemed-to-satisfy provisions


Deemed-to-satisfy (DTS) provisions are known and modelled (within the NCC) ways of creating a particular part of a structure. For example, the size, shape and appropriate reinforcement of a concrete slab will be offered for a particular soil type, given load, width of structure and strength of concrete. Such an example will be fully documented within the code. Alternatively, the code may specify an Australian standard (such as AS 1684 Residential timber-framed construction) as the means by which a particular Performance Requirement of the code may be met.

Performance Solutions

Performance Solutions, previously known as 'alternative' solutions, are those that have been specifically developed by the builder, designer, or product or material supplier. Such being the case, they are not documented within the NCC. Rather, they directly respond to the Performance Requirements of the NCC and are shown to do so by one or more of the assessment methods offered. These assessment methods are described within the general requirements section at the front of each of the NCC volumes. There are four methods offered, any combination of which may be used to determine compliance:

- Evidence of suitability i.e. evidence, as per the general requirements, is supplied
- Verification methods tests, calculations, inspections or the like as deemed appropriate within the NCC or by an appropriate authority (as defined by the NCC)
- Comparison with the DTS provisions the proposed solution is compared with existing deemed-tosatisfy examples offered within the NCC
- Expert judgement a qualified and experienced person judges that a particular approach complies with the Performance Requirements.

Over time, solutions alternative to those already documented within the NCC (i.e. the DTS provisions) may be fed into the NCC volumes and become, of themselves, DTS provisions. The main point you should understand from this section is that you have a choice: you can follow the examples provided in the NCC, *or* you can develop one of your own – *provided* that you can show that it satisfies the Performance Requirements for that particular element of the structure.

Types of standards

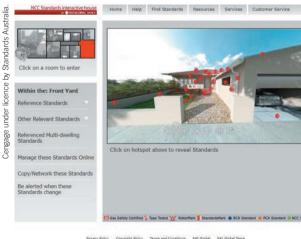
Standards are globally recognised as the means by which we structure and define both the quality and the approach to much of our daily lives. Originally, standards were industry and commerce focused; today they are integral to almost all aspects of our society, including product safety and reliability, legal systems and workplace safety. In the construction industry there is an Australian standard to cover every aspect of the structure, including the materials and equipment used to create that structure – right down to the sand in the mortar and the brush used to apply the paint.

There are basically three types of standards that you may encounter: international, regional and national. Common international standards will have the prefix ISO (International Organization for Standardization) or IEC (International Electrotechnical Commission). Regional standards are those developed and adopted by an economically aligned 'zone', such as the European Union or EU. Australia and New Zealand often adopt the one standard and these will have the prefix AS/NZS.

Australian standards

National standards are the ones you will most commonly come across in your daily work. Australian standards are developed by Standards Australia, the government and internationally recognised peak

PART 4


body for standards in this country. This organisation develops and revises standards based upon public input, international comparison and through access to some 9000 volunteer technical committee members. The resultant standards are currently distributed through a separate, now privately owned, organisation called Standards Australia International Global – better known as SAI Global. Baring Private Equity Asia, the current owner of SAI Global, has committed to continuing the online distribution and sale of Australian standards until 2023.

Australian standards are prefixed with simply AS. You can identify genuine Australian standards by the logo of Standards Australia and the 'wordmark' Australian Standard®. Joint Australian and New Zealand standards will have both the Australian and New Zealand logos as well as the trade mark Australian/New Zealand Standard™.

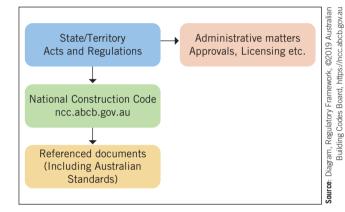
Individual standards are identified by name, number, part number (if applicable) and year of approval as per the examples below:

- AS/NZS 4505:2012 Garage doors and other large access doors
- AS 1684.2 2010 Residential timber-framed construction. Part 2: Non-cyclonic areas Other prefixes you may come across include HB (Handbook), and SA TS (Standards Australia Technical Specification), such as:
- HB 195-2002 The Australian Earth Building Handbook
- SA TS 101:2015 Design of post-installed and cast-in fastenings for use in concrete

Standards Australia are not the only source of standards referenced within the NCC. The National Association of Steel-Framed Housing (NASH) is an important example. NASH develop and market all the referenced steel framing standards listed within the NCC.

Source: © Standards Australia Limited Reproduced by

ancy Ballot Geoverbil Balloy Terms and Conditions SAL Global BAL Global Store © 2017 SAL Global Limited ABN 67 050 611 642


FIGURE 1.1 SAI Global's interactive NCC House, showing the Australian standards involved in various building elements

Aside from being the access point for standards, SAI Global also host a very useful web-based interactive by which you can explore how those standards are applied to the domestic house by the NCC (https://bca.saiglobal. com/ProductsServicesPage.asp?path = house). It is strongly recommended that you take the opportunity to use it as way of raising your awareness of the number of standards that can apply to any one area of a house.

Legal authority of the NCC and Australian standards

No code or regulation has legal effect unless legislation has been passed enforcing it. Each Australian state and territory has passed an Act of Parliament giving legal power to the NCC.

The NCC, in turn, gives legal effect to those Australian standards applicable to the Performance Requirements.

FIGURE 1.2 Regulatory path leading to the adoption of a standard (Australian or otherwise)

The administration and compliance supervision of the NCC is therefore the role of the individual states and territories, not the federal government or the **Australian Building Codes Board (ABCB)** who develop it. In the main, compliance and administration of the NCC falls upon local government authorities (councils) or private building certifiers.

Note that it is no longer a requirement that building approvals and inspections be conducted by, or through, the local council. Private certifiers are commonly available in most regions of Australia and are competitive in price and quality of service.

The NCC classes of buildings

The elements for this unit of competency are ordered so that identifying a building's classification follows after accessing and interpreting codes. For comprehension and logical flow, you should become familiar with the NCC's classes of buildings before proceeding further.

Determining the nature of a building

The NCC works through the systematic application of Performance Requirements to specifically identified classes of buildings and other structures. The determination of a classification depends much upon the nature of the structure. By 'nature', we mean the form and function, or purpose, of the structure, a building, or a designated part of a building. In many cases this may seem straightforward – and is; in other cases, the nature of a structure is less clear cut.

In general, the nature of a building falls into one of four categories, it is either a:

- private dwelling
- public building
- commercial building
- industrial building.

However, there are structures that don't fit any of these categories – such as fences, farm buildings and sheds, swimming pools, laboratories, private hospitals, car parks, bushfire shelters and many more.

In determining the nature of a building for the purposes of the NCC, therefore, you must consider carefully its function and use.

Function vs use

The function of a structure differs from its use in a few simple but important factors. The function of a farm shed, for example, could be to provide protection against sun, rain, dust and wind for a tractor. However, the same shed may also be 'used' for the mechanical servicing of the tractor by mechanics or other farmhands employed on the property and set up accordingly; i.e. it is a workshop. Used as shelter only, the shed fits a very different category to that of a workshop. Likewise, a medical practitioner's 'rooms' serve as a place for his or her practice. In general, this would include the physical treatment of only minor medical complaints. If, however, the rooms are used to carry out treatments that could render patients unconscious or non-ambulatory - i.e. the patient must stay resident at the rooms for some period after treatment - then its use is considered to be very different by the NCC. Function and form may be effectively the same in each instance; the use, however, is very different and so the NCC classification changes.

You must also consider all possible uses. This is because you may not be aware at the outset who the tenant may be, or exactly what they may use the building for. The farm shed offered earlier is the classic example. In these cases, you take the scenario that imposes the most onerous requirements – i.e. that the shed will most probably be used for maintenance, not just storage.

Having determined the nature of a building, you are then in a position to identify its NCC classification.

This, in turn, will determine factors such as access and egress requirements, light and ventilation, fire control measures and a raft of other important design and construction factors.

Identifying a building's classification

An important element of deciding a building's classification is that, in doing so, you are identifying the risks associated with its intended use and purpose. Getting it right means you will not over- or under-specify the building – either of which has cost implications. Additionally, correctly identifying a building's classification ensures that the purposes of the NCC outlined earlier are being met; i.e. health and safety, amenity, energy efficacy, sustainability and structural integrity.

The NCC provides for 10 classes of buildings, along with a number of sub-classifications. Each classification provides for the often highly divergent natures of the buildings, and hence the design elements and materials that must be incorporated into them. The NCC outlines these classifications in Part A6 of both Volumes One and Two. These NCC definitions tend to be brief but are quite specific. For the purposes of introduction, a more simplified set of descriptions is initially offered in **Table 1.1** below. These will then be discussed in more detail.

NCC building classes: some expanded commentary

Table 1.1 gives you a rough guide to the classes of buildings defined by the NCC. Further commentary is required, however, for a full understanding of each. We will begin with defining the concept of one 'storey' of a building, before following on with the expanded descriptions of each building class.

Storey: NCC definition

The NCC definition of one '**storey**' of a building is interesting and provides for some peculiar interpretation in one or two instances. You will find it in both NCC Volumes One and Two, within Schedule 3, Definitions (Vol. One, p. 518; Vol. Two, p. 663). It reads as follows:

Storey means a space within a building which is situated between one floor level and the floor level next above, or if there is no floor above, the ceiling or roof above, but not —

- (a) a space that contains only ----
 - (i) a lift shaft, stairway or meter room; or
 - (ii) a bathroom, shower room, laundry, water closet or other sanitary compartment; or
 - (iii) accommodation intended for not more than 3 vehicles; or
 - (iv) a combination of the above.
- (b) a mezzanine.

- PART 1

TABLE 1.1 NCC building classifications

Classification		Description			
Class 1 Class 1a		Single dwellings such as a detached house, or an attached row of houses, units, town houses or the like, separated by a fire-resisting wall continuous from ground to roof apex.			
	Class 1b	Boarding or guest houses/hostels with max floor area of less than 300 m ² . Generally, less than 12 occupants, but can include 4 or more single dwellings on the one allotment for use as short-term holiday accommodation.			
Class 2		Apartment buildings. Usually multi-residential structures with each apartment considered a sole- occupancy unit or SOU (see below). Often multi-storey, but may be single storey when the units share same subfloor or roof space not separated by a fire-resisting wall.			
Class 3		Residential buildings that don't fit Class 1 or 2. Larger guest houses/hostels, dormitory-style accommodation, detention centres, workers quarters, or care facilities not considered to be Class 9a.			
Class 4		A dwelling in an otherwise non-residential building of Class 5 through to 9. There can only be one Class 4 dwelling in a building. A caretaker's residence in an office complex is a common example.			
Class 5		Office buildings used commercially or professionally by lawyers, accountants, doctors, governmer bodies and the like. Excludes buildings Classed 6, 7, 8 or 9.			
Class 6		Shops, restaurants, cafés and the like. Retail or service outlets to the general public. Includes shopping centres, public laundries, bars and funeral parlours.			
Class 7	Class 7a	Buildings serving as carparks except private garages of 3 cars or less.			
	Class 7b	Storage or wholesale display buildings such as warehouses.			
Class 8		Laboratories, factories or workshops used for trade, sale or gain such as production, repair, maintenance, altering, packing or cleaning.			
Class 9 Public Buildings	Class 9a	Public buildings including health-care facilities (e.g. hospitals) and clinics in which patients may become unconscious or otherwise unable to move without assistance. Can include a laboratory without the need for multi-classification (laboratories are normally considered Class 8).			
U	Class 9b	Assembly buildings such as theatres, churches, night clubs, schools and preschools, sports facilities, gyms, train and bus stations.			
	Class 9c	Residential aged care facilities in which 24-hour care services are provided.			
Class 10	Class 10a	Non-habitable buildings or structures such as sheds, carports and private garages. There can only be one storey or level of garage space within any single building.			
	Class 10b	Non-habitable buildings or structures such as fences, antenna masts, retaining walls, swimming pools and the like.			
	Class 10c	Bushfire shelter when associated with, but not attached to, a Class 1a building.			
SOU		A Sole-Occupancy Unit (SOU) is not a class of building. It is a part of a building otherwise classed 1b, 2, 3, 5, 6 or 9 that is intended for the exclusive use of its owner(s), tenant or lessee. There may be multiple SOUs within the one building.			
Storey		See definition in text.			

This suggests that a private garage for three cars, coupled with a laundry, toilet and bathroom, located as the first level of a domestic house on a level block of land does not constitute a 'storey'; i.e. such a house is in fact a single-storey building. This only becomes an issue if you are working in a state where the low-rise definition of licenced work applies. And only in instances such as a Class 1b guest house that is sited above a private garage for three or less cars – this is because a two-storey guest house is a Type B construction (see Chapter 13, 'Low-rise construction: a definition') and therefore outside your scope of works. You should check with your local building authority for their interpretation before accepting to contract such works.

Class 1a

The most common form in this class is the typical Australian suburban home (Figure 1.3). However, Class Ia also includes homes that are attached to each other. Buildings of this type include terrace, row, or town houses, as well as units. What defines a cluster of attached dwellings as Class Ia is that each dwelling is separated by a vertical fire-resisting wall that is continuous from the ground through to the roof (see Figure 1.3). This includes any basements or subfloor garages. Class Ia buildings may be more than one storey, indeed there is no limit defined within the NCC; however, it is uncommon to see them exceed three storeys. Likewise, there is no limit to the number of dwellings or homes in any single development; i.e. a set of row or Source: Glenn Costin

FIGURE 1.3 Class 1a: suburban home

town houses could run the full length of a street. The key limitation to both Class 1a and Class 1b buildings is that they cannot be constructed above, or below, any other class of building except a Class 10a private garage. Nor can they be stacked one upon the other.

Class 1a defining characteristics:

- a residential dwelling
- attached dwellings may be attached horizontally only
- attached dwellings must be separated by a fireresisting vertical wall running from ground to roof
- cannot be constructed above or below any other class of building except a Class 10a private garage.

Class 1b

Boarding and guest houses or hostels (Figure 1.4) with a maximum floor area of less than 300 m² is the common definition for this class. In general, we are looking at less than 12 occupants overall, though this is not a definitive limit, and that occupants are transitory (short term). In a boarding house (or lodge), occupants may be resident for extended periods of time, but they are not regarded as tenants in that they do not hold a leasing agreement; as such, the buildings still fit this classification. A bed and breakfast also fits this class on the basis of short-term accommodation for which there is typically no lease agreement.

FIGURE 1.4 Class 1b: boarding or guest houses and hostels

This class also includes four or more single dwellings on the one allotment for use as short-term holiday accommodation; again, on the basis of there being typically no lease agreement. Common examples include individual cabins in caravan parks, resorts, and on farm-stay type properties. Note that up to three single dwellings on the one allotment retain the Class 1a classification.

As with Class 1a, Class 1b buildings cannot be constructed above, or below, any other class of building except a Class 10a private garage. Nor can they be stacked one upon the other.

Class 1b defining characteristics:

- a residential dwelling
- occupants are typically transient (generally short term) without a lease
- structured such that not more than 12 people would ordinarily occupy it
- floor area less than 300 m²
- cannot be constructed above or below any other class of building except a Class 10a private garage.

Class 2

These are apartment buildings: multi-residential structures with each apartment considered a **sole-occupancy unit (SOU)**. They can be, and often are, multi-storey. However, a single-storey cluster of units that are situated above a common subfloor or basement, or have a common ceiling space, or are built above a common Class 7a carpark, all fit the Class 2 category. The latter example is a multi-classification building. **Class 2 defining characteristics:**

- a residential dwelling
- apartments are defined by the NCC as soleoccupancy units or SOUs
- no limit to height of building, number or size of units
- may share a common subfloor or ceiling space
- can be constructed above or below another class of structure except a Class 1.

Class 3

These are larger guest houses or hostels where long term and/or transient people may reside; length of stay is therefore not important. They exceed the floor area limitations of a Class 1b and include dormitorystyle accommodation, detention centres and workers quarters. This class also includes care-type facilities not considered to be Class 9a, such as shared accommodation for people with a disability, the elderly (but not infirm), children and refugees. **Class 3 defining characteristics:**

a residential dwelling

- occupants may be long term or transient without a lease
- floor area larger than 300 m²
- can be constructed above or below another class of structure except a Class 1.

PART 1

Class 4

A Class 4 building is not really a building at all, but rather an integrated residential element of an otherwise non-residential structure – structures classified Class 5 through to 9. A Class 4 'building' is effectively an SOU. However, there can only be one Class 4 dwelling in any given building – that includes the whole building, not just a single storey of that building. A caretaker's residence in an office complex is a common example. **Class 4 defining characteristics:**

- a residential part of non-residential building
- is a sole-occupancy unit (SOU)
- not limited by size
- only one Class 4 element in any one building.

Class 5

These are office buildings used commercially or professionally by lawyers, accountants, doctors, government bodies and the like. There is generally more than one office in the building, making each office an SOU. They are *not* shops, however (which are Class 6). They are also not doctor's surgeries where patients are likely to undergo medical treatment that may leave them unconscious or non-ambulatory (unable to move without assistance); in such cases the building is Class 9a.

Class 5 defining characteristics:

- a non-residential building
- is an office, or is made up of offices, used for commercial or professional purposes
- not defined by size
- can be constructed above, below or within another class of non-residential building.

Class 6

Shops, restaurants, cafés and the like all fit this classification. These are buildings that serve as retail or service outlets to the general public. Where there are multiple shops, each 'shop' is an SOU by definition of the NCC. Class 6 buildings include shopping centres, public laundries, bars and funeral parlours. They are not defined by size, only by purpose; so they can be incredibly small (Figure 1.5), independently large, or form part of a multi-class building.

Class 6 defining characteristics:

- a non-residential building
- a retail or service outlet, or is made up of SOUs that have retail or service purposes
- not defined by size
- can be constructed above below or within another class of non-residential building.

Class 7a

These are buildings that serve as carparks. A garage associated with a building classed other than Class 1 (a or b) that holds more than three vehicles is classified as a 7a carpark: a typical example being a garage space under a Class 2 building that holds more than three vehicles.

FIGURE 1.5 Class 6: shops, restaurants and cafés

Class 7a carparks can also be separate single- or multistorey buildings. A farm shed where more than three tractors (or other farming vehicles) are parked also fits this category.

Class 7a defining characteristics:

- a non-residential building, and not associated with a Class 1 building
- designed for the express purpose of storing vehicles
- defined by the minimum number of vehicles stored (more than three)
- can be constructed independently, or above, below, or within another class of non-residential building.

Class 7b

Generally, a Class 7b building will be some form of warehouse or storage facility. However, this classification also includes buildings that not only store, but also display goods or produce for wholesale purposes. Class 7b buildings are not 'shops'; i.e. the owner/occupiers/tenants do not engage in retail to the general public, but rather offer bulk supply to those who do. Class 7b buildings can include multiple SOUs provided they are occupied for wholesale transactions.

- Class 7b defining characteristics:
- a non-residential building
- a building used for storage, and/or the display of produce or goods sold wholesale
- not defined by size
- can be constructed independently, or above, below, or within another class of non-residential building.

Class 8

These are factories or workshops in which some form of production, repair, maintenance, packing, assembling or other handicraft or processes takes place. In all cases, such activities are for the purposes of trade, sale or gain. This classification includes mechanics workshops, abattoirs, canneries and other food processing factories. Farm sheds where tractors or other farming equipment are stored, but also where mechanics are employed to service them, would fit this category. It also includes laboratories unless they are constructed as part of a Class 9a building.